Quantization of VLSI digital signal processing systems

نویسندگان

  • Gabriel Caffarena
  • Olivier Sentieys
  • Daniel Ménard
  • Juan A. López
  • David Novo
چکیده

Digital systems have finite precision, which imposes a maximum bound on the accuracy of the results of the computed mathematical operations. The so-called quantization process, also wordlength optimization, aims at finding cost-efficient hardware architectures that comply with a given maximum accuracy loss. Floating-point arithmetic is commonly used to perform scientific computations because it provides high dynamic range and mathematical precision. However, certain applications require the use of dedicated hardware to achieve high computation rates and low power. The computation speed is achieved by means of making use of highly parallel implementations, as well as custom data storage mechanisms (i.e. registers, local memories, etc.). The use of floating-point arithmetic in such systems is prohibitive and it is typically replaced by fixed-point arithmetic, which turns to be more cost-effective, or by restricted floating-point arithmetic. In any case, the designer must face an optimization problem -quantizationwhere the proper precision for each arithmetic operation is searched, resulting in a low-cost hardware implementation that complies with a minimum quality criterion. Quantization is not an easy task, and in some cases it is oversimplified in order to meet the time-to-market constraints, leading to far from optimal results. However, in some other cases such a simplification is not possible without seriously compromising the viability of the system. As a result, an exhaustive quantization is carried out, implying the extensive use of time-consuming techniques such as computer simulations. Therefore, improvements in quantization error estimation techniques as well as novel methodologies able to handle industrial size systems within a reasonable design time are of crucial importance. This special issue covers three major areas related to the quantization process: (i) the analysis of the selection of coefficient and signal precision on the design of linear systems, (ii) the efficient implementation and precision analysis of key IP cores for multimedia and communication systems and, (iii) the precision-wise high-level synthesis of DSP algorithms. The first set of papers focuses on the analysis of the quantization effects of the filter structures. In the paper “Sensitivity-based Pole and Input-Output Errors of Linear Filters as Indicators of the Implementation Deterioration in Fixed-Point Context”, a classical sensitivity analysis for the finite precision implementation of linear filters is extended and improved to consider the exact fixed-point format of the coefficients. Thus, the proposed specialized framework and indicators evaluate and select with improved accuracy the most convenient realization among a wider scope of filter structures for non-uniform quantization of the coefficients. In “Complexity-Aware Quantization and Lightweight VLSI Implementation of FIR Filters”, a complexityaware quantization framework for FIR filters is presented. It is based on the integration of three optimization techniques: signed-digit coefficient encoding, optimal scaling factor exploration, and common subexpression elimination. The proposed approach saves around 50% of additions, leading to silicon area reductions of up to 34%. The next three papers deal with the efficient design of fixed-point IP cores. The paper “Automatic IP Generation of FFT/IFFT Processors with Word-Length Optimization for MIMOOFDM Systems” presents an accurate precision analysis and a core generator for FFT/IFFT fixed-point cores. The generator makes use of a specific wordlength search algorithm that leads to efficient implementations that comply with recent MIMO-OFDM standards. In “Novel VLSI Algorithm and Architecture with Good Quantization Properties for a High Throughput * Correspondence: [email protected] Department of Information and Telecommunication Systems, University San Pablo CEU, Madrid, Spain Full list of author information is available at the end of the article Caffarena et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:32 http://asp.eurasipjournals.com/content/2012/1/32

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)

Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...

متن کامل

Design and Implementation of a High Speed Systolic Serial Multiplier and Squarer for Long Unsigned Integer Using VHDL

A systolic serial multiplier for unsigned numbers is presented which operates without zero words inserted between successive data words, outputs the full product and has only one clock cycle latency. The multiplier is based on a modified serial/parallel scheme with two adjacent multiplier cells. Systolic concept is a well-known means of intensive computational task through replication of func...

متن کامل

Design and Implementation of a High Speed Systolic Serial Multiplier and Squarer for Long Unsigned Integer Using VHDL

A systolic serial multiplier for unsigned numbers is presented which operates without zero words inserted between successive data words, outputs the full product and has only one clock cycle latency. &#10The multiplier is based on a modified serial/parallel scheme with two adjacent multiplier cells. Systolic concept is a well-known means of intensive computational task through replication of fu...

متن کامل

An efficient CAD tool for High-Level Synthesis of VLSI digital transformers

Digital transformers are considered as one of the digital circuits being widely used in signal and data processing systems, audio and video processing, medical signal processing as well as telecommunication systems. Transforms such as Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT) are among the ones being commonly used in this area. As an illu...

متن کامل

An Efficient Cordic Processor for Complex Digital Phase Locked Loop

Volume 2, Issue 2 March – April 2013 Page 306 Abstract—Now-a-days various Digital Signal Processing systems are implemented on a platform of programmable signal processors or on application specific VLSI chips. Coordinate Rotation Digital Computer (CORDIC) algorithm has turned out to be such kind of programmable signal processor. In recent times, it has been a widely researched topic in the fie...

متن کامل

A Low Power DSP Engine for Wireless Communications

This paper describes the architecture and the performance of a new programmable 16-bit Digital Signal Processor (DSP) engine. It is developed specifically for next generation wireless digital systems and speech applications. Besides providing a basic instruction set, similar to current day 16-bit DSP’s, it contains distinctive architectural features and unique instructions, which make the engin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012